L0(x)=
(x-x1) (x-x2)/ (x0-x1) (x0-x2)
L0(x)=
(x-7) (x-10)/ (37) (3-10)
L0(x)=
x2-17x+10/ 28
f(x0)L0(x)=5
x2-17x+10/ 28
f(x0)L0(x)=0,18x2-3,04x+12,5
L1(x)= (x-x0) (x-x2)/ (x1-x0) (x1-x2)
L1(x)= (x-3) (x-10)/ (7-3) (7-10)
L1(x)= -x2-13x+30/ 12
f(x1)L1(x)= -9 x2-13x+30/ 12
f(x1)L1(x)= -0,75x2+9,75x-22,5
L2(x)= (x-x0) (x-x1)/ (x2-x0) (x2-x1)
L2(x)= (x-3) (x-7)/ (10-3) (10-7)
L2(x)= -x2-10x+21/ 21
f(x2)L2(x)= 11
x2-10x+21/ 21
f(x2)L2(x)= 0,52x2-5,24x+11
p(x)= f(x0)L0(x)+ f(x1)L1(x)+
f(x2)L2(x)
p(x)= 0,18x2-3,04x+12,5-0,75x2+9,75x-22,5+0,52x2-5,24x+11
p(x)= -0,05x2+1,47x+1
f(8) = p(8) = -0,05.82+1,47.8+1
f(8) = p(8) = 9,56